Solutions to the tetrahedron and 3D reflection equations from quantum cluster algebras

Atsuo Kuniba (Univ. Tokyo)

Joint work with Rei Inoue and Yuji Terashima

Representation Theory, Integrable Systems and Related Topics, Beijing Institute of Mathematical Sciences and Applications

31 July 2023

- 1. Tetrahedron and 3D reflection equations
- 2. Quantum cluster algebra
- 3. Application to the tetrahedron equation
- 4. Relation to known solutions
- 5. Outlook

Most of the presentation will be about the tetrahedron equation for simplicity.

1. Tetrahedron and 3D reflection equations (3D analogue of the Yang-Baxter and reflection eqs.)

Tetrahedron eq. [A.B. Zamolodchikov 80]

 $R_{124}R_{135}R_{236}R_{456} = R_{456}R_{236}R_{135}R_{124} \text{ on } V^{\otimes 6} \qquad \qquad R_{ijk} \in \operatorname{End}(\stackrel{i}{V} \otimes \stackrel{j}{V} \otimes \stackrel{k}{V})$

3D reflection eq. [Isaev-Kulish 97]

 $R_{689}K_{3579}R_{249}R_{258}K_{1478}K_{1236}R_{456} = R_{456}K_{1236}K_{1478}R_{258}R_{249}K_{3579}R_{689}$

on $W \otimes V \otimes W \otimes V \otimes V \otimes V \otimes W \otimes V \otimes V$ $K_{ijkl} \in \operatorname{End}(\overset{i}{W} \otimes \overset{j}{V} \otimes \overset{k}{W} \otimes \overset{j}{V})$

They are compatibility conditions of the quantized Yang-Baxter eq. and quantized reflection eq., which are the *usual* Yang-Baxter and reflection equations up to conjugation.

$R_{124}R_{135}R_{236}R_{456} = R_{456}R_{236}R_{135}R_{124}$

$R_{689}K_{3579}R_{249}R_{258}K_{1478}K_{1236}R_{456} = R_{456}K_{1236}K_{1478}R_{258}R_{249}K_{3579}R_{689}$

Several interesting solutions are known for the tetrahedron equation by Zamolodchikov, Baxter, Kapranov-Voevodsky, Bazhanov, Kashaev, Korepanov, Maillet, Mangazeev, Sergeev, Stroganov, Bytsko-Volkov, K-Matsuike-Yoneyama, etc.

A few solutions are known for the 3D reflection equation by K-Okado, Yoneyama.

One systematic (traditional) approach is the quantum group theoretical one using quantized coordinate rings by [Kapranov-Voevodsky 94] and PBW basis of U_q^+ by [Sergeev 08]. They are equivalent [K-Okado-Yamada 13] and have been developed extensively with many applications.

In the approach, the diagrams in the previous pages emerge as Rex (reduced expression) graphs in the Coxeter group of SL_4 and Sp_6 .

The aim of this talk is to explore another approach by [Sun-Yagi 22] where these diagrams are accompanied by quivers on which the quantum cluster algebras work.

We will devise a new realization of a quantum cluster algebra by q-Weyl algebras, identify an existing solution and obtain new solutions.

Atsuo Kuniba Quantum Groups in Three-Dimensional Integrability

enretical and Mathematical Physic

2. Quantum cluster algebra [Fock-Goncharov 03,09]

$$\begin{split} & \text{Seed} = (B, \mathbf{Y}) \\ & B = (b_{ij})_{i,j=1}^n, \ b_{ij} = -b_{ji} \in \mathbb{Z} : \text{ Exchange matrix } (n \text{ fixed}) \\ & \mathbf{Y} = (Y_1, \dots, Y_n), \quad Y_i Y_j = q^{2b_{ij}} Y_j Y_i : \text{ Y-variables} \\ & \mathbb{F}(\mathbf{Y}) = \mathbb{F}(B, \mathbf{Y}) : \text{ non-commutative fraction field generated by } \mathbf{Y} \end{split} \qquad \begin{array}{c} B \leftrightarrow Q : \text{ quiver with vertices} \\ & 1, \dots, n \\ & i \xrightarrow{b_{ij}} j \end{array} \end{split}$$

Mutation

$$\begin{split} \mu_k(B,\mathbf{Y}) &= (B',\mathbf{Y}') \qquad k \in \{1,\dots,n\} \\ b'_{ij} &= \begin{cases} -b_{ij} & \text{if } i = k \text{ or } j = k \\ b_{ij} + [b_{ki}]_+ b_{kj} + [b_{kj}]_+ b_{ik} & \text{otherwise} \end{cases} \qquad [x]_+ &= \max(x,0) \\ Y'_i &= \begin{cases} Y_k^{-1} & i = k \\ q^{b_{ik}[b_{ki}]_+} Y_i Y_k^{[b_{ki}]_+} \prod_{m=1}^{|b_{ki}|} (1 + q^{-\operatorname{sgn}(b_{ki})(2m-1)} Y_k)^{-\operatorname{sgn}(b_{ki})} & i \neq k \end{cases} \end{split}$$

 μ_k on **Y** is decomposed into monomial part and dilog (automorphism) part in two (+, -) ways so that the following diagram becomes commutative:

$$\begin{split} Y_{i} \in \mathbb{F}(\mathbf{Y}) & \stackrel{\mu_{k}}{\longrightarrow} \mathbb{F}(\mathbf{Y}) & \\ & & \uparrow^{\mu_{k,\pm}} \text{ dilog part } & \\ Y_{i}' \in \mathbb{F}(\mathbf{Y}') & \stackrel{\tau_{k,\pm}}{\longrightarrow} \mathbb{F}(\mathbf{Y}) & \\ & & \text{monomial part } & \\ \end{split}$$

Compositions of $\operatorname{Ad}(\Psi_q(Y_k^{\varepsilon})^{\varepsilon})\tau_{k,\varepsilon}$ are called cluster transformations.

3. Application to the tetrahedron equation (basic idea)

Coxeter relation in the Weyl group $W(sl_4)$ in terms of indices of the simple reflections

 $\Phi: 121 \longleftrightarrow 212, 232 \longleftrightarrow 323 \quad \sigma: 13 \longleftrightarrow 31$

Rex (reduced expression) graph of the longest element (indices of Φ, σ refer to the positions)

Equating the two routes

 $\sigma_{34}\Phi_{123}\Phi_{345}\sigma_{23}\sigma_{56}\Phi_{345}\Phi_{123} = \Phi_{456}\Phi_{234}\sigma_{12}\sigma_{45}\Phi_{234}\Phi_{456}\sigma_{34}$

Formal identification $R_{ijk} = \Phi_{ijk}\sigma_{ik}$ leads to the tetrahedron equation:

 $R_{124}R_{135}R_{236}R_{456} = R_{456}R_{236}R_{135}R_{124}$

This observation has been utilized to produce an actual solution via quantized coordinate ring $A_q = A_q(sl_4)$ [Kapranov-Voevodsky 94]

Now this part is explained for the specific choice of Square Quiver.

In order to have a non-trivial loop, one should consider the *longest element* of the relevant Coxeter group.

Coxeter relation as wiring diagram

Square quiver associated to the wiring diagram

Let \hat{R}_{123} be the cluster transformation corresponding to

 $\sigma_{45}\mu_8\mu_4\mu_5\mu_8$

 $(\sigma_{45} = \text{permutation of } 4, 5)$

Mutation sequence with the sign (-, -, +, +) as an example:

$$(B,\mathbf{Y}) := (B^{(1)},\mathbf{Y}^{(1)}) \xrightarrow{-}{\mu_8} (B^{(2)},\mathbf{Y}^{(2)}) \xrightarrow{-}{\mu_5} (B^{(3)},\mathbf{Y}^{(3)}) \xrightarrow{+}{\mu_4} (B^{(4)},\mathbf{Y}^{(4)}) \xrightarrow{+}{\mu_8} (B^{(5)},\mathbf{Y}^{(5)}) \xrightarrow{-}{\sigma_{45}} (B^{(6)},\mathbf{Y}^{(6)}) =: (B',\mathbf{Y}')$$

According to the sequence, the cluster transformation \hat{R}_{123} : $\mathbb{F}(\mathbf{Y}') \to \mathbb{F}(\mathbf{Y})$ is given by

$$\begin{split} \hat{R}_{123} &= \operatorname{Ad} \left(\Psi_q(Y_8^{(1)-1})^{-1} \right) \tau_{8,-} \operatorname{Ad} \left(\Psi_q(Y_5^{(2)-1})^{-1} \right) \tau_{5,-} \operatorname{Ad} \left(\Psi_q(Y_4^{(3)}) \right) \tau_{4,+} \operatorname{Ad} \left(\Psi_q(Y_8^{(4)}) \right) \tau_{8,+} \sigma_{45} \\ &= \operatorname{Ad} \left(\Psi_q(Y_5^{-1})^{-1} \Psi_q(Y_8^{-1})^{-1} \right) \circ \tau \circ \operatorname{Ad} \left(\Psi_q(Y_8^{'-1}) \Psi_q(Y_5^{'-1}) \right), \end{split}$$

where the monomial part $\tau = \tau_{8,-}\tau_{5,-}\tau_{4,+}\tau_{8,+}\sigma_{45}$: $\mathbb{F}(\mathbf{Y}') \to \mathbb{F}(\mathbf{Y})$ is given by

$$\begin{array}{ll} Y_{1}' \mapsto Y_{1}, & Y_{2}' \mapsto Y_{2}Y_{4}Y_{5}, & Y_{3}' \mapsto q^{-1}Y_{3}Y_{4}, & Y_{4}' \mapsto qY_{5}^{-1}Y_{8}^{-1} \\ Y_{5}' \mapsto Y_{5}, & Y_{6}' \mapsto Y_{5}Y_{6}Y_{8}, & Y_{7}' \mapsto qY_{7}Y_{8}, & Y_{8}' \mapsto qY_{4}^{-1}Y_{5}^{-1}, & Y_{9}' \mapsto Y_{9} \\ \end{array}$$

Explicitly R_{123} acts as follows:

$$lpha_5 = 1 + q^{-1}Y_5 + Y_5Y_8,$$

 $lpha_8 = 1 + q^{-1}Y_8 + Y_8Y_4$

$$Y_{1}' \mapsto \alpha_{4}Y_{1}, \qquad Y_{2}' \mapsto Y_{2}Y_{4}Y_{5}\alpha_{4}^{-1}, \quad Y_{3}' \mapsto Y_{3}Y_{8}Y_{4}\alpha_{8}^{-1}, \quad Y_{4}' \mapsto \alpha_{4}Y_{5}^{-1}\alpha_{8}^{-1}, \qquad \alpha_{8} = 1 + q^{-1}Y_{8} + Y_{8}Y_{8}, \\ Y_{5}' \mapsto \alpha_{5}Y_{8}^{-1}\alpha_{4}^{-1}, \quad Y_{6}' \mapsto \alpha_{5}Y_{6}, \qquad Y_{7}' \mapsto \alpha_{8}Y_{7}, \qquad Y_{8}' \mapsto \alpha_{8}Y_{4}^{-1}\alpha_{5}^{-1}, \quad Y_{9}' \mapsto Y_{9}Y_{5}Y_{8}\alpha_{5}^{-1}$$

Claim: The cluster transformation \hat{R} satisfies the tetrahedron equation.

321323 = 323123

2

Mutations/cluster transformations for RHS of the tetrahedron eq.

Indices of **R** are the vertices of the wiring diagram.

321323

Mutations/Cluster transformations for LHS of the tetrahedron eq.

08,11

MI4

M8

MI

M14

= Final quiver of RHS (previous page)

Realization in terms of q-Weyl algebra

In the initial and final wiring diagrams attach the canonical variables

$$[u_i, w_j] = 2\hbar \delta_{ij} \quad (i, j = 1, 2, 3)$$

to the vertices 1,2,3 $(q = e^{\hbar})$.

 $\begin{array}{ll} Y_1 = e^{-w_2 - \lambda_2}, \ Y_4 = e^{u_1 - u_2 + \lambda_1}, \ Y_7 = e^{-u_1} & Y_1' = e^{-w_3 - \lambda_3}, \ Y_4' = e^{u_2 - u_1 + \lambda_2}, \ Y_7' = e^{-u_2}, \\ Y_2 = e^{u_2 + \lambda_2}, \ Y_5 = e^{w_2 - w_3 - \lambda_3}, \ Y_8 = e^{w_1 - u_3}, & Y_2' = e^{u_1 + \lambda_1}, \ Y_5' = e^{w_3 - w_2 - \lambda_2}, \ Y_8' = e^{u_3 - w_1 - \lambda_1 + \lambda_3}, \\ Y_3 = e^{-w_1 - \lambda_1}, \ Y_6 = e^{u_3 + \lambda_3}, & Y_9 = e^{w_3}. & Y_3' = e^{-u_3}, & Y_6' = e^{w_1}, & Y_9' = e^{w_2}. \end{array}$

 $(\lambda_1, \lambda_2, \lambda_3 \text{ are parameters for which a similar graphical rule exists.})$

"Parameterize" the Y-variables by the rule:

Proposition

(i)
$$Y_i Y_j = q^{2b_{ij}} Y_j Y_i, \quad Y'_i Y'_j = q^{2b'_{ij}} Y'_j Y'_i$$

(ii) Monomial part τ is realized by Baker-Campbell-Hausdorff formula as

$$\tau(\cdots) = P(\cdots)P^{-1}$$
 with $P = e^{\frac{1}{2\hbar}(u_1 - w_1)(w_2 - w_3)}\sigma_{23}e^{\frac{\lambda_2 - \lambda_3}{2\hbar}(u_3 - w_1)}$

Therefore the cluster transformation \hat{R}_{123} is totally an adjoint as

$$\begin{split} \hat{R}_{123} &= \operatorname{Ad} \left(\Psi_q(Y_5^{-1})^{-1} \Psi_q(Y_8^{-1})^{-1} \right) \tau \operatorname{Ad} \left(\Psi_q(Y_8^{\prime -1}) \Psi_q(Y_5^{\prime -1}) \right) = \operatorname{Ad} \left(R(\lambda_1, \lambda_2, \lambda_3)_{123} \right) \\ & R(\lambda_1, \lambda_2, \lambda_3)_{123} := \Psi_q(Y_5^{-1})^{-1} \Psi_q(Y_8^{-1})^{-1} P \Psi_q(Y_8^{\prime -1}) \Psi_q(Y_5^{\prime -1}) \\ &= \Psi_q(e^{w_3 - w_2 + \lambda_3})^{-1} \Psi_q(e^{u_3 - w_1})^{-1} P \Psi_q(e^{w_1 - u_3 + \lambda_1 - \lambda_3}) \Psi_q(e^{w_2 - w_3 + \lambda_2}) \end{split}$$

(iii) Tetrahedron equation holds:

$$R(\lambda_1, \lambda_2, \lambda_4)_{124} R(\lambda_1, \lambda_3, \lambda_5)_{135} R(\lambda_2, \lambda_3, \lambda_6)_{236} R(\lambda_4, \lambda_5, \lambda_6)_{456}$$
$$= R(\lambda_4, \lambda_5, \lambda_6)_{456} R(\lambda_2, \lambda_3, \lambda_6)_{236} R(\lambda_1, \lambda_3, \lambda_5)_{135} R(\lambda_1, \lambda_2, \lambda_4)_{124}$$

4. Relation to know solutions

R-matrix for the square quiver with sign = (-, -, ++)

$$R(\lambda_1, \lambda_2, \lambda_3) = \Psi_q(e^{w_3 - w_2 + \lambda_3})^{-1} \Psi_q(e^{u_3 - w_1})^{-1} P \Psi_q(e^{w_1 - u_3 + \lambda_1 - \lambda_3}) \Psi_q(e^{w_2 - w_3 + \lambda_2})$$
$$P = e^{\frac{1}{2\hbar}(u_1 - w_1)(w_2 - w_3)} \sigma_{23} e^{\frac{\lambda_2 - \lambda_3}{2\hbar}(u_3 - w_1)}$$

reproduces the *R*-matrix in "Quantum 2 + 1 evolution model" [Sergeev 98], which was obtained from "face type" 3D auxiliary linear problem.

Other choices of sign provide different formulas for the same *R*-matrix. For example, sign = (+, +, -, -) leads to

$$R(\lambda_1, \lambda_2, \lambda_3) = \Psi_q(e^{w_1 - u_3})\Psi_q(e^{w_2 - w_3 - \lambda_3})P'\Psi_q(e^{w_3 - w_2 - \lambda_2})^{-1}\Psi_q(e^{u_3 - w_1 + \lambda_3 - \lambda_1})^{-1}$$
$$P' = e^{\frac{1}{2\hbar}(w_1 - u_3)(u_2 + w_2)}\sigma_{13}e^{\frac{\lambda_1 - \lambda_2 + \lambda_3}{2\hbar}(w_1 - u_3) + \frac{\lambda_1}{2\hbar}(w_2 - w_3) + \frac{\lambda_3}{2\hbar}(u_1 - u_2)}$$

Modular double version

Set
$$\hbar = i\pi b^2, \ q = e^{i\pi b^2}, \ \bar{q} = e^{-i\pi b^{-2}}, \ \eta = \frac{b+b^{-1}}{2}$$

 $\lambda_i \to 2\pi b\lambda_i, \ u_i \to 2\pi b\hat{x}_i, \ w_i \to 2\pi b\hat{p}_i, \ [\hat{x}_j, \hat{p}_k] = \frac{i}{2\pi}\delta_{jk}$

Non-compact quantum dilogarithm

$$\Phi_b(u) = \exp\left(\frac{1}{4} \int_{\mathbb{R}+i0} \frac{e^{-2iuw}}{\sinh(wb)\sinh(w/b)} \frac{dw}{w}\right) \qquad \frac{\Phi_b(u-ib/2)}{\Phi_b(u+ib/2)} = 1 + e^{2\pi bu} = \frac{\Psi_q(e^{2\pi b(u+ib/2)})}{\Psi_q(e^{2\pi b(u-ib/2)})} \quad \cdots \quad (\sharp)$$

(this formula is valid when $|\operatorname{Im} u| < |\operatorname{Re} \eta|$)

From (\sharp), the Modular double R acting on $L^2(\mathbb{R}^3)$ such that

(i)
$$\hat{x}_j$$
 acts as a multiplication by x_j and \hat{p}_j as $-\frac{i}{2\pi} \frac{\partial}{\partial x_j}$
(ii) duality $b \leftrightarrow b^{-1}$ is implemented

is obtained by formally replacing $\Psi_q(e^{2\pi b\hat{u}})$ by $\Phi_b(\hat{u})^{-1}$:

sign = (-, -, +, +):

$$\begin{aligned} \Re(\lambda_1,\lambda_2,\lambda_3) &= \Phi_b(\hat{p}_3 - \hat{p}_2 + \lambda_3)\Phi_b(\hat{x}_3 - \hat{p}_1)\mathcal{P}\,\Phi_b(\hat{p}_1 - \hat{x}_3 + \lambda_1 - \lambda_3)^{-1}\Phi_b(\hat{p}_2 - \hat{p}_3 + \lambda_2)^{-1} \\ \mathcal{P} &= e^{2\pi i(\hat{x}_1 - \hat{p}_1)(\hat{p}_3 - \hat{p}_2)}\sigma_{23}e^{2\pi i(\lambda_2 - \lambda_3)(\hat{p}_1 - \hat{x}_3)} \\ \text{sign} &= (+, +, -, -); \\ \Re(\lambda_1,\lambda_2,\lambda_3) &= \Phi_b(\hat{p}_1 - \hat{x}_3)^{-1}\Phi_b(\hat{p}_2 - \hat{p}_3 - \lambda_3)^{-1}\mathcal{P}'\,\Phi_b(\hat{p}_3 - \hat{p}_2 - \lambda_2)\Phi_b(\hat{x}_3 - \hat{p}_1 - \lambda_1 + \lambda_3) \\ \mathcal{P}' &= e^{2\pi i(\hat{x}_3 - \hat{p}_1)(\hat{x}_2 + \hat{p}_2)}\sigma_{13}e^{2\pi i(\lambda_1 - \lambda_2 + \lambda_3)(\hat{x}_3 - \hat{p}_1) + \lambda_1(\hat{p}_3 - \hat{p}_2) + \lambda_3(\hat{x}_2 - \hat{x}_1)} \end{aligned}$$

Integral kernel (matrix element) of the modular double R [Sergeev 10]

$$\begin{split} \langle x_1, x_2, x_3 | x'_1, x'_2, x'_3 \rangle &= \delta(x_1 - x'_1) \delta(x_2 - x'_2) \delta(x_3 - x'_3) \\ \langle x_1, x_2, x_3 | \Re(\lambda_1, \lambda_2, \lambda_3) | x'_1, x'_2, x'_3 \rangle \quad \text{(up to normalization)} \\ &= \delta(x_2 + x_3 - x'_2 - x'_3) e^{2\pi i ((x'_3 - \lambda_1)(x_1 - x'_1) + (\lambda_3 - i\eta)(x_2 - x'_1))} \frac{\Phi_b(x_2 - x_1 - \lambda_1) \Phi_b(x'_2 - x'_1 + \lambda_2)}{\Phi_b(x'_2 - x_1 - i\eta) \Phi_b(x_2 - x'_1 - \lambda_1 + \lambda_2 - i\eta)} \end{split}$$

" Φ_b -analogue of the cross ratio"

5. Outlook

Captured by quantum cluster algebra for the square quiver (what about the rest?)

 $\langle x|R|x'\rangle \sim \frac{\Phi_b(z_1)\Phi_b(z_2)\Phi_b(z_3)\Phi_b(z_4)}{\Phi_b(z_2+z_4\cdots)}$ $(z_i = \text{linear form of } x_1, \ldots, x'_3)$ moduar double of [K-Matsuike-Yoneyama 23] Fourier transform $\begin{pmatrix} \sigma | R | \sigma' \rangle \sim & \\ \text{``vertex-IRC'' duality} & \delta_{\sigma_1' + \sigma_2'}^{\sigma_1 + \sigma_2} \delta_{\sigma_2' + \sigma_3'}^{\sigma_2 + \sigma_3} \int dz \frac{e^{\cdots} \Phi_b (z + \frac{\sigma_1 - \sigma_3 \cdots}{2}) \Phi_b (z + \frac{\sigma_3 - \sigma_1 \cdots}{2})}{\Phi_b (z - \frac{\sigma_1' + \sigma_3' \cdots}{2})}$ $\times \frac{\Phi_b(x_2 - x_1 \cdots) \Phi_b(x_2' - x_1' \cdots)}{\Phi_b(x_2' - x_1' \cdots) \Phi_b(x_2 - x_1' \cdots)}$ "quantum 2+1 evolution model" "quantum geometry R" [Bazhanov-Mangazeev-Sergeev 09] $| q^N = 1$ $R_{j_{1}j_{2}j_{3}}^{i_{1}i_{2}i_{3}} \sim \delta_{j_{2}+j_{3}}^{i_{2}+i_{3}} \frac{w_{p_{1}}(i_{2}-i_{1})w_{p_{2}}(j_{2}-j_{1})}{w_{p_{3}}(j_{2}-i_{1})w_{p_{4}}(i_{2}-j_{1})} \xrightarrow{\text{``vertex-IRC" duality}} \delta_{n_{1}+n_{2}'}^{n_{1}+n_{2}'} \delta_{n_{2}'+n_{3}'}^{n_{2}+n_{3}} \sum_{n \in \mathbb{Z} \times \mathbb{Z}} \frac{q^{\cdots}w_{p_{1}}(n+\frac{n_{1}-n_{3}\cdots}{2})w_{p_{2}}(n+\frac{n_{3}-n_{1}\cdots}{2})}{w_{p_{3}}(n+\frac{n_{1}+n_{3}\cdots}{2})w_{p_{4}}(n-\frac{n_{1}'+n_{3}'\cdots}{2})}$ "vertex formulation of ZBB model" "Zamolodchikov-Bazhanov-Baxter (ZBB) model" [Sergeev-Mangazeev-Stroganov 95] [Bazhanov-Baxter 92]

Case of **Triangle quiver**:

 $\langle x|\mathcal{R}|x'\rangle \sim \delta(x_2+x_3-x_2'-x_3')$

[Sergeev 98, 10]

 $| q^N = 1$

A new solution to the tetrahedron and 3D reflection eqs. [Inoue-K-Terashima] in preparation

感谢您的关注

Thank you